Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 180: 106146, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150309

RESUMO

Talaromycosis, namely Talaromyces marneffei infection, is increasing gradually and has a high mortality rate even under antifungal therapy. Although autophagy acts differently on different pathogens, it is a promising therapeutic strategy. However, information on autophagy in macrophages and animals upon infection by T. marneffei is still limited. Therefore, several models were employed here to investigate the role of autophagy in host defense against T. marneffei, including RAW264.7 macrophages as in vitro models, different types of Caenorhabditis elegans and BALB/c mice as in vivo models. We applied the clinical T. marneffei isolate SUMS0152 in this study. T. marneffei-infected macrophages exhibit increased formation of autophagosomes. Further, macrophage autophagy promoted by rapamycin or Earle's balanced salt solution (EBSS) inhibited the viability of intracellular T. marneffei. In vivo, compared with uninfected Caenorhabditis elegans, the wild-type nematodes upregulated the expression of the autophagy-related gene lgg-1 and atg-18, and nematodes carrying GFP reporter were induced to form autophagosomes (GFP::LGG-1) after T. marneffei infection. Furthermore, the knockdown of lgg-1 significantly reduced the survival rate of T. marneffei-infected nematodes. Likewise, the autophagy activator rapamycin reduced the fungal burden and suppressed lung inflammation in a mouse model of infection. In conclusion, autophagy is essential for host defense against T. marneffei in vitro and in vivo. Therefore, autophagy may be an attractive target for developing new therapeutics to treat talaromycosis.


Assuntos
Caenorhabditis elegans , Talaromyces , Animais , Camundongos , Autofagia , Sirolimo/farmacologia
2.
Curr Med Sci ; 43(3): 445-455, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37191939

RESUMO

OBJECTIVE: Acute lung injury (ALI) is an acute clinical syndrome characterized by uncontrolled inflammation response, which causes high mortality and poor prognosis. The present study determined the protective effect and underlying mechanism of Periplaneta americana extract (PAE) against lipopolysaccharide (LPS)-induced ALI. METHODS: The viability of MH-S cells was measured by MTT. ALI was induced in BALB/c mice by intranasal administration of LPS (5 mg/kg), and the pathological changes, oxidative stress, myeloperoxidase activity, lactate dehydrogenase activity, inflammatory cytokine expression, edema formation, and signal pathway activation in lung tissues and bronchoalveolar lavage fluid (BALF) were examined by H&E staining, MDA, SOD and CAT assays, MPO assay, ELISA, wet/dry analysis, immunofluorescence staining and Western blotting, respectively. RESULTS: The results revealed that PAE obviously inhibited the release of proinflammatory TNF-α, IL-6 and IL-1ß by suppressing the activation of MAPK/Akt/NF-κB signaling pathways in LPS-treated MH-S cells. Furthermore, PAE suppressed the neutrophil infiltration, permeability increase, pathological changes, cellular damage and death, pro-inflammatory cytokines expression, and oxidative stress upregulation, which was associated with its blockage of the MAPK/Akt/NF-κB pathway in lung tissues of ALI mice. CONCLUSION: PAE may serve as a potential agent for ALI treatment due to its anti-inflammatory and anti-oxidative properties, which correlate to the blockage of the MAPK/NF-κB and AKT signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Periplaneta , Camundongos , Animais , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Periplaneta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos BALB C
3.
ACS Appl Bio Mater ; 3(12): 8525-8531, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019622

RESUMO

Three-dimensional (3D) and two-dimensional (2D) Ag-based zwitterionic metal-organic frameworks (MOFs) [Ag2(Cedcp)]n (1, 3D, H3CedcpBr denotes N-(carboxyethyl)-(3,5-dicarboxyl)-pyridinium bromide) and {[Ag4(Cmdcp)2(H2O)4]·4H2O}n (2, 2D, H3CmdcpBr denotes N-(carboxymethyl)-(3,5-dicarboxyl)-pyridinium bromide) have been prepared and investigated for antimicrobial activity via minimal inhibition concentration (MIC) test and killing kinetic assay. Both MOFs 1 and 2 show good water stability and solubility ascribed to their characteristic aromatic rings and positively charged pyridinium of the ligands, as well as the presence of Ag+ on their surface, leading to strong antimicrobial activity and a wide antimicrobial spectrum toward Gram-negative and positive bacteria. The results indicated that MOF 2 possesses a faster antibacterial activity (60 min) than MOF 1 (120 min). Scanning electron microscopy analysis further suggests that the Ag-based MOFs are capable of rupturing the bacterial membrane, leading to cell death. Moreover, both MOFs exhibit little hemolytic activity against mouse erythrocytes and show good biocompatibility in vitro, rendering MOFs 1 and 2 potential therapeutic agents for diseases caused by bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...